

Introduction

Heart failure is the inability of the heart to pump sufficient amounts of blood to meet the metabolic demands of organs and tissues as needed. It is often induced by cardiac hypertrophy. Cardiac hypertrophy is the thickening of the heart muscle as it responds to increased biomechanical stress. It represents the initial stage of cardiac diseases that can progress to heart failure. Using the Neonatal Cardiomyocyte Isolation System, rat pups' heart cells were isolated. Following isolation, cells were incubated in a culture medium with FBS for 24 hours.

Methodology

Total RNA was reverse transcribed and then amplified by the Preamplification System for cDNA Synthesis and Taq DNA Polymerase. As a result of my data, I can conclude that TNF-α has both an apoptotic and hypertrophic effect. However, EGF shows enhanced hypertrophic effect and reverses ANG II apoptotic effect as well as enhances its hypertrophic effect. It is also noted that IGF-1 reverses ANG II apoptotic effect as well as enhances its hypertrophic effect. However, EGF hypertrophic effect is masked in the presence of IGF-1, but circumvented by EGF.

Results

- ANG II enhances hypertrophic signaling pathway, ERK1/2, is positively affected by TNF-α or ANG II. EGF shows enhanced hypertrophic effect and reverses ANG II apoptotic effect as well as enhances its hypertrophic effect. However, EGF hypertrophic effect is masked in the presence of IGF-1, but circumvented by EGF.

Discussion

Cardiac hypertrophy is the cellular response to an increase in biomechanical stress. It represents the initial stage of cardiac diseases that can progress to heart failure. Using the Neonatal Cardiomyocyte Isolation System, rat pups' heart cells were isolated. Following isolation, cells were incubated in a culture medium with FBS for 24 hours.

Materials and Methodology

The gene expression of growth factor proteins as indices of cardiac hypertrophy versus apoptosis

Abstract

The present work was carried out at Howard University Medical College in Washington, DC. Funding was provided through the Howard University Amgen Scholars Program 2008. The author would like to thank the authorities of the University for their support and encouragement. The author is also thankful to the Amgen Foundation for their financial assistance.